
Genetic Algorithms



Genetic Algorithms - History

Originated in the fifties, but developed in the sixties by three distinct research groups:

• Pioneered by L. J. Fogel in the US 
• J. H. Holland in the 1970’s called his method a genetic algorithm
• I. Rechenberg and H.P. Schwefel introduced evolution strategies

Got popular in the late 1980’s
Based on ideas from Darwinian Evolution
Can be used to solve a variety of  problems that are not easy to solve using other techniques



Evolution in the real world

Ø Each cell of  a living thing contains chromosomes - strings of  DNA
Ø Each chromosome contains a set of  genes - blocks of  DNA
Ø Each gene determines some aspect of  the organism (like eye colour)
Ø A collection of  genes is sometimes called a genotype
Ø A collection of  aspects (like eye colour) is sometimes called a 
phenotype

Ø Reproduction involves recombination of  genes from parents and then 
small amounts of  mutation (errors) in copying 

Ø The fitness of  an organism is how much it can reproduce before it dies
Ø Evolution based on “survival of  the fittest”



Genetic Algorithms

Generate a set of  random solutions
Repeat

Test each solution in the set (rank them)
Remove some bad solutions from set
Duplicate some good solutions 

make small changes to some of  them

Until best solution is good enough



How do you encode a solution?

• Obviously this depends on the problem!
• GA’s often encode solutions as fixed length 

“bitstrings” (e.g. 101110, 111111, 000101)
• Each bit represents some aspect of  the proposed 

solution to the problem
• For GA’s to work, we need to be able to “test” any 

string and get a “score” indicating how “good” that 
solution is



Silly Example - Drilling for Oil

• Imagine you had to drill for oil somewhere along a single 1km desert 
road

• Problem: choose the best place on the road that produces the most oil 
per day

• We could represent each solution as a position on the road
• Say, a whole number between [0..1000]



Where to drill for oil?
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Digging for Oil

• The set of  all possible solutions [0..1000] is called the search space or state 
space

• In this case it’s just one number but it could be many numbers or 
symbols

• Often GA’s code numbers in binary producing a bitstring representing a 
solution

• In our example we choose 10 bits which is enough to represent 0..1000



Convert to binary string

512 256 128 64 32 16 8 4 2 1

900 1 1 1 0 0 0 0 1 0 0

300 0 1 0 0 1 0 1 1 0 0

1023 1 1 1 1 1 1 1 1 1 1

In GA’s these encoded strings are sometimes called 
“genotypes” or “chromosomes” and the individual bits are 

sometimes called “genes”



Drilling for Oil
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Summary

Our example is really optimisation over a function f(x) where we adapt the 
parameter x

We have seen how to:
• represent possible solutions as a number and encode them in binary strings
• generate a score for each number given a function of  “how good” each 

solution is - this is often called a fitness function



Search Space

• For a simple function f(x) the search space is one 
dimensional.

• But by encoding several values into the chromosome 
many dimensions can be searched e.g. two dimensions 
f(x,y)

• Search space can be visualised as a surface or fitness 
landscape in which fitness dictates height

• Each possible genotype is a point in the space
• A GA tries to move the points to better places (higher 

fitness) in the space



Fitness landscapes



Search Space

• Obviously, the nature of  the search space dictates 
how a GA will perform

• A completely random space would be bad for a 
GA

• Also GA’s can get stuck in local maxima if  search 
spaces contain lots of  these

• Generally, spaces in which small improvements get 
closer to the global optimum are good



Back to the (GA) Algorithm
Generate a set of  random solutions
Repeat

Test each solution in the set (rank 
them)
Remove some bad solutions from set
Duplicate some good solutions 

make small changes to some of  
them

Until best solution is good enough



Adding Sex - Crossover

• Although it may work for simple search spaces our 
algorithm is still very simple

• It relies on random mutation to find a good solution
• It has been found that by introducing “sex” into the 

algorithm better results are obtained
• This is done by selecting two parents during 

reproduction and combining their genes to produce 
offspring



Adding Sex - Crossover

• Two high scoring “parent” bit strings (chromosomes)
are selected and with some probability (crossover 
rate) combined

• Producing two new offspring (bit strings)
• Each offspring may then be changed randomly 

(mutation)



Selecting Parents

• Many schemes are possible as long as better scoring 
chromosomes more likely selected

• Chromosomes with highest fitness should have 
higher probability to be selected

• “Roulette Wheel” selection can be used:
• Add up the fitness's of  all chromosomes
• Generate a random number R in that range
• Select the first chromosome in the population that -

when all previous fitness’s are added - gives you at least 
the value R



Example population
No. Chromosome Fitness
1 1010011010 1
2 1111100001 2
3 1011001100 3
4 1010000000 1
5 0000010000 3
6 1001011111 5
7 0101010101 1
8 1011100111 2



Roulette Wheel Selection
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Crossover - Recombination

1010000000

1001011111

Crossover 
single point -

random
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With some high probability (crossover 
rate) apply crossover to the parents. 
(typical values are 0.8 to 0.95) 



Mutation
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Offspring1

Offspring2

1011001111

1000000000

Offspring1

Offspring2

With some small probability (the mutation rate) flip 
each bit in the offspring (typical values between 0.1 

and 0.001)

mutate

Original offspring Mutated offspring



Back to the (GA) Algorithm

Generate a population of random chromosomes
Repeat (each generation)

Calculate fitness of each chromosome
Repeat

Use roulette selection to select pairs of parents
Generate offspring with crossover and mutation

Until a new population has been produced
Until best solution is good enough


