
Genetic Algorithms

Genetic Algorithms - History

Originated in the fifties, but developed in the sixties by three distinct research groups:

• Pioneered by L. J. Fogel in the US
• J. H. Holland in the 1970’s called his method a genetic algorithm
• I. Rechenberg and H.P. Schwefel introduced evolution strategies

Got popular in the late 1980’s
Based on ideas from Darwinian Evolution
Can be used to solve a variety of problems that are not easy to solve using other techniques

Evolution in the real world

Ø Each cell of a living thing contains chromosomes - strings of DNA
Ø Each chromosome contains a set of genes - blocks of DNA
Ø Each gene determines some aspect of the organism (like eye colour)
Ø A collection of genes is sometimes called a genotype
Ø A collection of aspects (like eye colour) is sometimes called a
phenotype

Ø Reproduction involves recombination of genes from parents and then
small amounts of mutation (errors) in copying

Ø The fitness of an organism is how much it can reproduce before it dies
Ø Evolution based on “survival of the fittest”

Genetic Algorithms

Generate a set of random solutions
Repeat

Test each solution in the set (rank them)
Remove some bad solutions from set
Duplicate some good solutions

make small changes to some of them

Until best solution is good enough

How do you encode a solution?

• Obviously this depends on the problem!
• GA’s often encode solutions as fixed length

“bitstrings” (e.g. 101110, 111111, 000101)
• Each bit represents some aspect of the proposed

solution to the problem
• For GA’s to work, we need to be able to “test” any

string and get a “score” indicating how “good” that
solution is

Silly Example - Drilling for Oil

• Imagine you had to drill for oil somewhere along a single 1km desert
road

• Problem: choose the best place on the road that produces the most oil
per day

• We could represent each solution as a position on the road
• Say, a whole number between [0..1000]

Where to drill for oil?

0 500 1000

Road

Solution2 = 900Solution1 = 300

Digging for Oil

• The set of all possible solutions [0..1000] is called the search space or state
space

• In this case it’s just one number but it could be many numbers or
symbols

• Often GA’s code numbers in binary producing a bitstring representing a
solution

• In our example we choose 10 bits which is enough to represent 0..1000

Convert to binary string

512 256 128 64 32 16 8 4 2 1

900 1 1 1 0 0 0 0 1 0 0

300 0 1 0 0 1 0 1 1 0 0

1023 1 1 1 1 1 1 1 1 1 1

In GA’s these encoded strings are sometimes called
“genotypes” or “chromosomes” and the individual bits are

sometimes called “genes”

Drilling for Oil

0 1000
Road

Solution2 = 900
(1110000100)

Solution1 = 300
(0100101100)

O
 I

L

Location

30
5

Summary

Our example is really optimisation over a function f(x) where we adapt the
parameter x

We have seen how to:
• represent possible solutions as a number and encode them in binary strings
• generate a score for each number given a function of “how good” each

solution is - this is often called a fitness function

Search Space

• For a simple function f(x) the search space is one
dimensional.

• But by encoding several values into the chromosome
many dimensions can be searched e.g. two dimensions
f(x,y)

• Search space can be visualised as a surface or fitness
landscape in which fitness dictates height

• Each possible genotype is a point in the space
• A GA tries to move the points to better places (higher

fitness) in the space

Fitness landscapes

Search Space

• Obviously, the nature of the search space dictates
how a GA will perform

• A completely random space would be bad for a
GA

• Also GA’s can get stuck in local maxima if search
spaces contain lots of these

• Generally, spaces in which small improvements get
closer to the global optimum are good

Back to the (GA) Algorithm
Generate a set of random solutions
Repeat

Test each solution in the set (rank
them)
Remove some bad solutions from set
Duplicate some good solutions

make small changes to some of
them

Until best solution is good enough

Adding Sex - Crossover

• Although it may work for simple search spaces our
algorithm is still very simple

• It relies on random mutation to find a good solution
• It has been found that by introducing “sex” into the

algorithm better results are obtained
• This is done by selecting two parents during

reproduction and combining their genes to produce
offspring

Adding Sex - Crossover

• Two high scoring “parent” bit strings (chromosomes)
are selected and with some probability (crossover
rate) combined

• Producing two new offspring (bit strings)
• Each offspring may then be changed randomly

(mutation)

Selecting Parents

• Many schemes are possible as long as better scoring
chromosomes more likely selected

• Chromosomes with highest fitness should have
higher probability to be selected

• “Roulette Wheel” selection can be used:
• Add up the fitness's of all chromosomes
• Generate a random number R in that range
• Select the first chromosome in the population that -

when all previous fitness’s are added - gives you at least
the value R

Example population
No. Chromosome Fitness
1 1010011010 1
2 1111100001 2
3 1011001100 3
4 1010000000 1
5 0000010000 3
6 1001011111 5
7 0101010101 1
8 1011100111 2

Roulette Wheel Selection

1 2 3 1 3 5 1 2

0 18

21 3 4 5 6 7 8

Rnd[0..18] = 7

Chromosome4

Parent1

Rnd[0..18] = 12

Chromosome6

Parent2

Crossover - Recombination

1010000000

1001011111

Crossover
single point -

random

1011011111

1010000000

Parent1

Parent2

Offspring1

Offspring2

With some high probability (crossover
rate) apply crossover to the parents.
(typical values are 0.8 to 0.95)

Mutation

1011011111

1010000000

Offspring1

Offspring2

1011001111

1000000000

Offspring1

Offspring2

With some small probability (the mutation rate) flip
each bit in the offspring (typical values between 0.1

and 0.001)

mutate

Original offspring Mutated offspring

Back to the (GA) Algorithm

Generate a population of random chromosomes
Repeat (each generation)

Calculate fitness of each chromosome
Repeat

Use roulette selection to select pairs of parents
Generate offspring with crossover and mutation

Until a new population has been produced
Until best solution is good enough

