
Introduction to Metaheuristics

• Heuristics
• “to find” (from ancient Greek “ευρίσκειν”)

• Meta-
• An abstraction from another concept

• beyond, in an upper level
• used to complete or add to

• E.g., meta-data = “data about data”

• Metaheuristics
• “A heuristic around heuristics”
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• Metaheuristics…
• …usually incorporate mechanisms to avoid getting trapped in confined areas 

of  the search space
• …usually are non-deterministic
• …are not problem specific (but their subordinate heuristics are)
• …may use some form of  memory to better guide the search
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• Some popular frameworks
• Genetic Algorithms
• Simulated Annealing
• Tabu Search
• Scatter Search
• Ant Colony Optimization
• Particle Swarm Optimization
• Iterated Local Search
• Variable Neighborhood Search
• Adaptive Memory Programming
• …
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• Metaheuristics…
• …can address both discrete- and continuous-domain optimization problems
• …are strategies that “guide” the search process
• …range from simple local search procedures to complex adaptive learning 

processes
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• Metaheuristics…
• …efficiently explore the search space in order to find good 

(near-optimal) feasible solutions
• …provide no guarantee of  global or local optimality
• …are agnostic to the unexplored feasible space (i.e., no 

“bound” information)
• …lack a metric of  “goodness” of  solution (often stop due 

to an external time or iteration limit)
• …are not based on some algebraic model
unlike exact methods!

• …are often used in conjunction with an exact method
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• Metaheuristics…
• …is a relatively new field (started in the ‘80s or so)

• becomes possible because we can now afford vast amounts of  computation

• inspired from “AI,” rather than “pure math”

• lack of  theoretical “rigor” (no proofs, theorems, etc. for people to pursue)

Introduction to Metaheuristics



Metaheuristics classification
Trajectory-based
(S-metaheuristics)

Population-based
(P-metaheuristics)
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Stop because of  no improvement in region C(s2)
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Turns out two global optima in this problem, 
but none was identified
• One was missed during search of  region C(s1)
• One was far away from searched space
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2nd population



POPULATION-BASED METHODS

Again, optimum may or may not have been 
sampled
• Typically, the incumbent always remains in the 

population, so need only focus on last 
generation



POPULATION-BASED METHODS

Again, optimum may or may not have been 
sampled
• Typically, the incumbent always remains in the 

population, so need only focus on last 
generation


