Introduction to Metaheuristics
5

- Heuristics
. “to find” (from ancient Greek “gupiokev”)

o Meta-

- An abstraction from another concept
- beyond, in an upper level
- used to complete or add to

- E.g., meta-data = “data about data”

o Metaheuristics
- “A heuristic around heuristics’

Introduction to Metaheuristics
5

- Heuristics
. “to find” (from ancient Greek “gupiokev”)

o Meta-

- An abstraction from another concept
- beyond, in an upper level
- used to complete or add to

- E.g., meta-data = “data about data”

o Metaheuristics
- “A heuristic around heuristics’

Introduction to Metaheuristics
5

- Heuristics
. “to find” (from ancient Greek “gupiokev”)

o Meta-

- An abstraction from another concept
- beyond, in an upper level
- used to complete or add to

- E.g., meta-data = “data about data”

o Metaheuristics
- “A heuristic around heuristics’

Introduction to Metaheuristics
5

- Metaheuristics...

- ...usually incorporate mechanisms to avoid getting trapped in confined areas
of the search space

- ...usually are non-deterministic
- ...are not problem specific (but their subordinate heuristics are)

- ...may use some form of memory to better guide the search

[
) y

Introduction to Metaheuristics
5

Some popular frameworks

- Genetic Algorithms

- Simulated Annealing

. Tabu Search

« Scatter Search

- Ant Colony Optimization

- Particle Swarm Optimization

. Iterated Local Search

- Variable Neighborhood Search

- Adaptive Memory Programming

Introduction to Metaheuristics
5

- Metaheuristics. ..
- ...can address both discrete- and continuous-domain optimization problems
- ...are strategies that “guide” the search process

- ...range from simple local search procedures to complex adaptive learning
processes

[
) y

Introduction to Metaheuristics
5

« Metaheuristics...

- ...efficiently explore the search space in order to find good
(near-optimal) feasible solutions

- ...provide no guarantee of global or local optimality

- ...are agnostic to the unexplored feasible space (i.e., no
“bound” information)

- ...lack a metric of “goodness” of solution (often stop due
to an external time or iteration limit)

- ...are not based on some algebraic model
unlike exact methods!

- ...are often used in conjunction with an exact method

Introduction to Metaheuristics
5

- Metaheuristics...

- ...1s a relatively new field (started in the ‘80s or so)
- becomes possible because we can now afford vast amounts of computation
- inspired from “Al’ rather than “pure math”

- lack of theoretical “rigor” (no proofs, theorems, etc. for people to pursue)

Trajectory-based
(S-metaheuristics)

Generate
candidates
Candidate
solutions
O Memory
Select
solution

FIGURE 2.1 Main principles of single-based metaheuristics.

Metaheuristics classification

Population-based
(P-metaheuristics)

Generate population

Replace population

FIGURE 3.1 Main principles of P-metaheuristics.

Algorithm 2.1 High-level template of S-metaheuristics.

Algorithm 3.1 High-level template of P-metaheuristics.

Input: Initial solution 5.
t=0;
Repeat
/* Generate candidate solutions (partial or complete neighborhood) from s, ¥/
Generate(C(s,)) :
/* Select a solution from C(s) to replace the current solution s, */
se41 = Select(C(sy)) :
t=t+1:
Until Stopping criteria satisfied
Output: Best solution found.

P = Py; /* Generation of the initial population */

t=0;

Repeat
Generate(P)); /* Generation a new population */
P,;1 = Select-Population(P, U P)): /* Select new population */
t=t+1;

Until Stopping criteria satisfied

Output: Best solution(s) found.

)) |||

TRAJECTORY METHODS

Generate
candidates]
Candidate
solutions Y
(
O Memory)
o °
° o
Select] ° o ®
solution Y o L
{
(
FIGURE 2.1 Main principles of single-based metaheuristics. °) L ° L4
o
° ® o
(()
° s °?
Algorithm 2.1 High-level template of S-metaheuristics. ™) °
()
Input: Initial solution s;. o ©)
t=0;)
Repeat Py P) Y
/* Generate candidate solutions (partial or complete neighborhood) from s, */ °
Generate(C(s,)) : S
/* Select a solution from C(s) to replace the current solution s, %/
se41 = Select(C(s,)) ©
t=t+1;
Until Stopping criteria satisfied

Output: Best solution found.

TRAJECTORY METHODS

Generate
candidates]
Candidate
solutions Y
(
O Memory ® C(so)
o °
So
° o
Select] ° o ®
solution
) (] ° (]
([]
FIGURE 2.1 Main principles of single-based metaheuristics. °) L ° L4
o ¢ °
(
(Q.
- o ~ - . . .
Algorithm 2.1 High-level template of S-metaheuristics.) PS
()
Input: Initial solution . o © o
t=0; ([J
ch:.-at _ , Y P Y
/* Generate candidate solutions (partial or complete neighborhood) from s, */ °
Generate(C(s,)) : Y
/* Select a solution from C(s) to replace the current solution s, %/
se41 = Select(C(s,)) ©
t=t+1:
Until Stopping criteria satisfied

Output: Best solution found.

TRAJECTORY METHODS

Generate
candidates]
Candidate
solutions Y
(
O | Memory C(so)
([]
(
Select o ©
solution o o
{
([]
FIGURE 2.1 Main principles of single-based metaheuristics. °) L ° L4
o
° ® o
(Q.
® °
Algorithm 2.1 High-level template of S-metaheuristics. ° ™) °
Input: Initial solution s;. o ©)
t=0; ([J
Repeat) Py P) Y
/* Generate candidate solutions (partial or complete neighborhood) from s, */ °
Generate(C(s,)) : Y
/* Select a solution from C(s) to replace the current solution s, %/
se41 = Select(C(s,)) ©
t=t+1;
Until Stopping criteria satisfied

Output: Best solution found.

TRAJECTORY METHODS

Generate
candidates]
Candidate
solutions Y
O | Memory
Select
solution
([]
FIGURE 2.1 Main principles of single-based metaheuristics. e) L L4
Y ® ([J o C(sy)
(L ()
° s ?
Algorithm 2.1 High-level template of S-metaheuristics. ° ™) °

Input: Initial solution s;. o ©)
t=0; ([J
Repeat Py P) Y

/* Generate candidate solutions (partial or complete neighborhood) from s, */ °

Generate(C(s,)) : S

/* Select a solution from C(s) to replace the current solution s, %/

se41 = Select(C(s,)) ©

t=t+1;
Until Stopping criteria satisfied

Output: Best solution found.

TRAJECTORY METHODS

Generate
candidates]
Candidate
solutions Y
O | Memory
Select
solution
([]
FIGURE 2.1 Main principles of single-based metaheuristics. e) L L4
) Cls)
Algorithm 2.1 High-level template of S-metaheuristics.
Input: Initial solution s;. C(sp)
t=0; ([J
Repeat ™) Y
/* Generate candidate solutions (partial or complete neighborhood) from s, */ Py
Generate(C(s,)) : Y
/* Select a solution from C(s) to replace the current solution s, %/
se41 = Select(C(s,)) ©

t=t+1;
Until Stopping criteria satisfied
Output: Best solution found.

Stop because of no improvement in region C(sy)

TRAJECTORY METHODS

Generate
candidates

O | Memory

Select
solution

Candidate
solutions

FIGURE 2.1 Main principles of single-based metaheuristics.

Algorithm 2.1 High-level template of S-metaheuristics.

Input: Initial solution s;. C(sp)
t=0; ([J
Repeat ™) ™)

/* Generate candidate solutions (partial or complete neighborhood) from s, */
Generate(C(s,)) :

/* Select a solution from C(s) to replace the current solution s, */ ®
Se1 = Select(C(sy)) ©
t=t+1:
Until Stopping criteria satisfied Turns out two global optima in this problem,
Output: Best solution found. but none was identified
— o))\
* One was missed during search of region C(s;) L |2))

* One was far away from searched space N

POPULATION-BASED METHODS

Generate population

» (
[]
[]
[]
([]
Memory °
[]
° o ®
[]
£) (] ° (] o
Replace population ° Y Py
FIGURE 3.1 Main principles of P-metaheuristics. o ©® Y ®
[]
[] ()
P [
Algorithm 3.1 High-level template of P-metaheuristics. ° ®
. []
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate(P)), /* Generation a new population */
P41 = Select-Population(P, U P)); /* Select new population */ L
t=t+ 11 o
Until Stopping criteria satisfied
Output: Best solution(s) found.

POPULATION-BASED METHODS

th :
Generate population 0 POPulﬂUOﬂ
» (
[]
[]
[]
Memory ° °
[]
° o ®
[]
£ ™) (] ® (] o
Replace population ° Y Py
FIGURE 3.1 Main principles of P-metaheuristics. ¢ o ©® Y ®
[]
[] ()
P [
Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[]
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate(P)), /* Generation a new population */
P41 = Select-Population(P, U P)); /* Select new population */ L
t=t+ 11 o
Until Stopping criteria satisfied
Output: Best solution(s) found.

POPULATION-BASED METHODS

Generate popu|at|0n Get SOmC HCW pOlﬂtS
» (
[]
[]
[]
Memory ° °
[]
° o ®
o
£ ™) (] ® (] o
Replace population ° o °
FIGURE 3.1 Main principles of P-metaheuristics. ¢ o ©® Y ®
(o]
(o] ()
P [
Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[]
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate(P)), /* Generation a new population */
P41 = Select-Population(P, U P)); /* Select new population */ L
t=t+ 11 o
Until Stopping criteria satisfied
Output: Best solution(s) found.

POPULATION-BASED METHODS

Generate popu|at|0n DrOp Some Old pOlﬂtS
» (
[]
[]
[]
Memory ° °
[]
° o ®
o
£ ™) (] ® (] o
Replace population ° ® °
FIGURE 3.1 Main principles of P-metaheuristics. ¢ o ©® Y ®
(o]
(o] ()
P [
Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[]
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate(P)), /* Generation a new population */
P41 = Select-Population(P, U P)); /* Select new population */ L
t=t+1; o
Until Stopping criteria satisfied
Output: Best solution(s) found.

POPULATION-BASED METHODS

st 1
Generate population 1 POPUﬂaUOﬂ
» (
[]
[]
[]
Memory ° °
[]
° o ®
[
£ ™) (] ® (] o
Replace population ° ® Py
FIGURE 3.1 Main principles of P-metaheuristics. ¢ o ©® Y ®
[
[()
P [
Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[]
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate(P)), /* Generation a new population */
P41 = Select-Population(P, U P)); /* Select new population */ L
t=t+ 11 o
Until Stopping criteria satisfied
Output: Best solution(s) found.

POPULATION-BASED METHODS

nd :
Generate population 2 POPU13'E10H
» (
[]
[]
[]
Memory ° °
[]
° o ®
[]
£ ™) (] ® (] o
Replace population ° ® Py
FIGURE 3.1 Main principles of P-metaheuristics. ¢ o ©® Y ®
[]
[] ()
P [
Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[]
P = Py: /* Generation of the initial population */ ° ‘. PY
t=0: Y
Repeat ° P °
Generate(P)), /* Generation a new population */
P41 = Select-Population(P, U P)); /* Select new population */ L
t=t+1; o
Until Stopping criteria satisfied
Output: Best solution(s) found.

POPULATION-BASED METHODS

Generate population

» ([]
[]
[]
[]
([]
Memory °
[]
° o ®
[]
< ™) (] ® (] o
Replace population ° o °
FIGURE 3.1 Main principles of P-metaheuristics. o ©® Y ®
[]
[] ()
P [
Algorithm 3.1 High-level template of P-metaheuristics. ° ®
. . . .) (]
P = Py: /* Generation of the initial population */ P P
t=0:
Repeat ®
Do ry. J% : . ¥ ® ([] ® o
Generate(P)), /* Generation a new population */
P41 = Select-Population(P, U P)); /* Select new population */ ®
t=t+ 11 *
Until Stopping criteria satisfied
Output: Best solution(s) found.

Again, optimum may or may not have been
sampled

* Typically, the incumbent always remains in the
population, so need only focus on last
generation

POPULATION-BASED METHODS

Generate population

» ([]
[]
[]
[]
([]
Memory °
[]
° o ®
[]
< ™) (] ® (] o
Replace population ° o °
FIGURE 3.1 Main principles of P-metaheuristics. o ©® Y ®
[]
[] ()
P [
Algorithm 3.1 High-level template of P-metaheuristics. ° ®
. . . .) (]
P = Py: /* Generation of the initial population */ P P
t=0:
Repeat ®
Do ry. J% : . ¥ ® ([] ® o
Generate(P)), /* Generation a new population */
P41 = Select-Population(P, U P)); /* Select new population */ ®
t=t+ 11 *
Until Stopping criteria satisfied
Output: Best solution(s) found.

Again, optimum may or may not have been
sampled

* Typically, the incumbent always remains in the
population, so need only focus on last
generation

