Introduction to Metaheuristics
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- Heuristics
. “to find” (from ancient Greek “gupiokev”)

o Meta-

- An abstraction from another concept
- beyond, in an upper level
- used to complete or add to

- E.g., meta-data = “data about data”

o Metaheuristics
- “A heuristic around heuristics’
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- Metaheuristics...

- ...usually incorporate mechanisms to avoid getting trapped in confined areas
of the search space

- ...usually are non-deterministic
- ...are not problem specific (but their subordinate heuristics are)

- ...may use some form of memory to better guide the search
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Some popular frameworks

- Genetic Algorithms

- Simulated Annealing

. Tabu Search

« Scatter Search

- Ant Colony Optimization

- Particle Swarm Optimization

. Iterated Local Search

- Variable Neighborhood Search

- Adaptive Memory Programming
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- Metaheuristics. ..
- ...can address both discrete- and continuous-domain optimization problems
- ...are strategies that “guide” the search process

- ...range from simple local search procedures to complex adaptive learning
processes
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« Metaheuristics...

- ...efficiently explore the search space in order to find good
(near-optimal) feasible solutions

- ...provide no guarantee of global or local optimality

- ...are agnostic to the unexplored feasible space (i.e., no
“bound” information)

- ...lack a metric of “goodness” of solution (often stop due
to an external time or iteration limit)

- ...are not based on some algebraic model
unlike exact methods!

- ...are often used in conjunction with an exact method
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- Metaheuristics...

- ...1s a relatively new field (started in the ‘80s or so)
- becomes possible because we can now afford vast amounts of computation
- inspired from “Al’ rather than “pure math”

- lack of theoretical “rigor” (no proofs, theorems, etc. for people to pursue)
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FIGURE 3.1 Main principles of P-metaheuristics.

Algorithm 2.1 High-level template of S-metaheuristics.

Algorithm 3.1 High-level template of P-metaheuristics.

Input: Initial solution 5.
t=0;
Repeat
/* Generate candidate solutions (partial or complete neighborhood) from s, ¥/
Generate(C(s,)) :
/* Select a solution from C(s) to replace the current solution s, */
se41 = Select(C(sy)) :
t=t+1:
Until Stopping criteria satisfied
Output: Best solution found.

P = Py; /* Generation of the initial population */

t=0;

Repeat
Generate( P)); /* Generation a new population */
P,;1 = Select-Population( P, U P)): /* Select new population */
t=t+1;

Until Stopping criteria satisfied

Output: Best solution(s) found.

)) |||




TRAJECTORY METHODS

Generate
candidates ]
Candidate
solutions Y
(
O Memory )
o °
° o
Select ] ° o ®
solution Y o L
{
(
FIGURE 2.1 Main principles of single-based metaheuristics. ° ) L ° L4
o
° ® o
( ()
° s °?
Algorithm 2.1 High-level template of S-metaheuristics. ™) °
()
Input: Initial solution s;. o © )
t=0; )
Repeat Py P ) Y
/* Generate candidate solutions (partial or complete neighborhood) from s, */ °
Generate(C(s,)) : S
/* Select a solution from C(s) to replace the current solution s, %/
se41 = Select(C(s,)) ©
t=t+1;
Until Stopping criteria satisfied

Output: Best solution found.
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Algorithm 2.1 High-level template of S-metaheuristics. ) PS
()
Input: Initial solution . o © o
t=0; ([ J
ch:.-at . . . . _ , Y P Y
/* Generate candidate solutions (partial or complete neighborhood) from s, */ °
Generate(C(s,)) : Y
/* Select a solution from C(s) to replace the current solution s, %/
se41 = Select(C(s,)) ©
t=t+1:
Until Stopping criteria satisfied

Output: Best solution found.
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Algorithm 2.1 High-level template of S-metaheuristics. ° ™) °
Input: Initial solution s;. o © )
t=0; ([ J
Repeat . . . . ) Py P ) Y
/* Generate candidate solutions (partial or complete neighborhood) from s, */ °
Generate(C(s,)) : Y
/* Select a solution from C(s) to replace the current solution s, %/
se41 = Select(C(s,)) ©
t=t+1;
Until Stopping criteria satisfied

Output: Best solution found.
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Algorithm 2.1 High-level template of S-metaheuristics. ° ™) °

Input: Initial solution s;. o © )
t=0; ([ J
Repeat Py P ) Y

/* Generate candidate solutions (partial or complete neighborhood) from s, */ °

Generate(C(s,)) : S

/* Select a solution from C(s) to replace the current solution s, %/

se41 = Select(C(s,)) ©

t=t+1;
Until Stopping criteria satisfied

Output: Best solution found.
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Algorithm 2.1 High-level template of S-metaheuristics.
Input: Initial solution s;. C(sp)
t=0; ([ J
Repeat ™) Y
/* Generate candidate solutions (partial or complete neighborhood) from s, */ Py
Generate(C(s,)) : Y
/* Select a solution from C(s) to replace the current solution s, %/
se41 = Select(C(s,)) ©

t=t+1;
Until Stopping criteria satisfied
Output: Best solution found.

Stop because of no improvement in region C(sy)
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Algorithm 2.1 High-level template of S-metaheuristics.

Input: Initial solution s;. C(sp)
t=0; ([ J
Repeat ™) ™)

/* Generate candidate solutions (partial or complete neighborhood) from s, */
Generate(C(s,)) :

/* Select a solution from C(s) to replace the current solution s, */ ®
Se1 = Select(C(sy)) ©
t=t+1:
Until Stopping criteria satisfied Turns out two global optima in this problem,
Output: Best solution found. but none was identified
— o))\
* One was missed during search of region C(s;) L |2))

* One was far away from searched space N
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Algorithm 3.1 High-level template of P-metaheuristics. ° ®
. [ ]
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate( P)), /* Generation a new population */
P41 = Select-Population( P, U P)); /* Select new population */ L
t=t+ 11 o
Until Stopping criteria satisfied
Output: Best solution(s) found.
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Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[ ]
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate( P)), /* Generation a new population */
P41 = Select-Population( P, U P)); /* Select new population */ L
t=t+ 11 o
Until Stopping criteria satisfied
Output: Best solution(s) found.
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Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[ ]
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate( P)), /* Generation a new population */
P41 = Select-Population( P, U P)); /* Select new population */ L
t=t+ 11 o
Until Stopping criteria satisfied
Output: Best solution(s) found.
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Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[ ]
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate( P)), /* Generation a new population */
P41 = Select-Population( P, U P)); /* Select new population */ L
t=t+1; o
Until Stopping criteria satisfied
Output: Best solution(s) found.




POPULATION-BASED METHODS

st 1
Generate population 1 POPUﬂaUOﬂ
» (
[ ]
[ ]
[ ]
Memory ° °
[ ]
° o ®
[
£ ™) (] ® (] o
Replace population ° ® Py
FIGURE 3.1 Main principles of P-metaheuristics. ¢ o ©® Y ®
[
[ ()
P [
Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[ ]
P = Py: /* Generation of the initial population */ ° .. PY
t=0: Y
Repeat ° P °
Generate( P)), /* Generation a new population */
P41 = Select-Population( P, U P)); /* Select new population */ L
t=t+ 11 o
Until Stopping criteria satisfied
Output: Best solution(s) found.
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Algorithm 3.1 High-level template of P-metaheuristics. ° ®
[ ]
P = Py: /* Generation of the initial population */ ° ‘. PY
t=0: Y
Repeat ° P °
Generate( P)), /* Generation a new population */
P41 = Select-Population( P, U P)); /* Select new population */ L
t=t+1; o
Until Stopping criteria satisfied
Output: Best solution(s) found.
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Algorithm 3.1 High-level template of P-metaheuristics. ° ®
. . . . ) (]
P = Py: /* Generation of the initial population */ P P
t=0:
Repeat ®
Do ry. J% : . ¥ ® ([ ] ® o
Generate( P)), /* Generation a new population */
P41 = Select-Population( P, U P)); /* Select new population */ ®
t=t+ 11 *
Until Stopping criteria satisfied
Output: Best solution(s) found.

Again, optimum may or may not have been
sampled

* Typically, the incumbent always remains in the
population, so need only focus on last
generation
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Algorithm 3.1 High-level template of P-metaheuristics. ° ®
. . . . ) (]
P = Py: /* Generation of the initial population */ P P
t=0:
Repeat ®
Do ry. J% : . ¥ ® ([ ] ® o
Generate( P)), /* Generation a new population */
P41 = Select-Population( P, U P)); /* Select new population */ ®
t=t+ 11 *
Until Stopping criteria satisfied
Output: Best solution(s) found.

Again, optimum may or may not have been
sampled

* Typically, the incumbent always remains in the
population, so need only focus on last
generation



