Newton's method

It approximates f(x) with a quadratic function in the neiborhood of the current point using the Taylor-series expansion of f

then optimizes the approximated quadratic function to obtain the new iterate point.

As in the single-variable case the optimality conditions can be derived from the Taylor-series expansion

$$f(\boldsymbol{x}_k + \Delta \boldsymbol{x}) \approx f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k) \Delta \boldsymbol{x} + \Delta \boldsymbol{x} H(\boldsymbol{x}_k) \Delta \boldsymbol{x}$$

Note that x_k is the known current point (therefore, also $\nabla f(x_k)$ and $H(x_k)$ are known. The objective is now to determine Δx which optimizes $f(x_k + \Delta x)$. Then we solve:

$$\frac{\partial f(x_k + \Delta x)}{\partial \Delta x} = \mathbf{C}$$

Newton's method

$$\frac{\partial f(\boldsymbol{x}_k + \Delta \boldsymbol{x})}{\partial \Delta \boldsymbol{x}} = 0 \qquad \Longrightarrow \qquad H(\boldsymbol{x}_k) \Delta \boldsymbol{x} = - \nabla f(\boldsymbol{x}_k)$$
$$\Delta \boldsymbol{x} = -H(\boldsymbol{x}_k)^{-1} \nabla f(\boldsymbol{x}_k)$$

Newton step, it moves to a stationary point of the second order approximation derived from the Taylor-series expansion

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - H(\boldsymbol{x}_k)^{-1} \nabla f(\boldsymbol{x}_k)$$

Newton's method

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - H(\boldsymbol{x}_k)^{-1} \,\nabla f(\boldsymbol{x}_k)$$

If $H(x_k)$ is definite positive than only one iteration is required for a quadratic function to reach the optimum point, from any starting point

Positive definite. Matrix A is said to be positive definite if its quadratic form $x^T A x$ is positive for any $x \neq 0$.

Newton's Method Steps

- 1. K=0
- 2. Choose a starting point, x_k
- 3. Calculate $\nabla f(\mathbf{x}_k)$ and $H(\mathbf{x}_k)$
- 4. Calculate the next x_{k+1} using the equation

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - H(\boldsymbol{x}_k)^{-1} \,\nabla f(\boldsymbol{x}_k)$$

5. Use either of the convergence criteria discussed earlier to determine convergence. If it hasn't converged, return to step 2.

Comments on Newton's Method

- We can see that unlike the gradient descend, Newton's method uses both the gradient and the Hessian
- This usually reduces the number of iterations needed, but increases the computation needed for each iteration
- □ So, for very complex functions, a simpler method is usually faster

For an example, we will use the same problem as before:

Minimize
$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) + (x_2)^2$$

 $- x_2 x_3 + (x_3)^2 + x_3$

 $\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 - x_2 + 1 & -x_1 + 2x_2 - x_3 & -x_2 + 2x_3 + 1 \end{bmatrix}$

The Hessian is: $H(x_k) = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$

And we will need the inverse of the Hessian:

$$H(x_k)^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 3/4 & 1/2 & 1/4 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/4 & 1/2 & 3/4 \end{bmatrix}$$

So, pick
$$x_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Calculate the gradient for the 1st iteration:

$$\nabla f(\boldsymbol{x}_0) = \begin{bmatrix} 0 - 0 + 1 & -0 + 0 - 0 & -0 + 0 + 1 \end{bmatrix}$$
$$\Rightarrow \nabla f(\boldsymbol{x}_0) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

So, the new x is:

$$x_1 = x_0 - H(x_0)^{-1} \nabla f(x_0)$$

$$= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 3/4 & 1/2 & 1/4 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/4 & 1/2 & 3/4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\boldsymbol{x_1} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

Now calculate the new gradient:

$$\nabla f(\mathbf{x}_1) = \begin{bmatrix} -2+1+1 & 1-2+1 & 1-2+1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

Since the gradient is zero, the method has converged

Comments on Example

Because it uses the 2nd derivative, Newton's Method models quadratic functions exactly and can find the optimum point in one iteration.

If the function had been a higher order, the Hessian would not have been constant and it would have been much more work to calculate the Hessian and take the inverse for each iteration.

