
Newton’s method
It approximates f(x) with a quadratic function in the neiborhood of the current point using
the Taylor-series expansion of 𝑓
then optimizes the approximated quadratic function to obtain the new iterate point.

As in the single-variable case the optimality conditions can be derived from the 
Taylor-series expansion

Note that𝒙!is the known current point (therefore, also ∇𝑓(𝒙!) and 𝐻(𝒙!) are known.
The objective is now to determine ∆𝑥 which optimizes f(𝒙! + ∆𝑥). Then we solve:
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Newton’s method
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Newton step, it moves to a stationary point of the second order approximation derived from 
the Taylor-series expansion

𝒙&#' = 𝒙& − 𝐻(𝒙&)(' ∇𝑓(𝒙&)



Newton’s method

If 𝐻(𝒙&) is definite positive than only one iteration is required for a 

quadratic function to reach the optimum point, from any starting point

𝒙&#' = 𝒙& − 𝐻(𝒙&)(' ∇𝑓(𝒙&)



Newton’s Method Steps
1. K=0
2. Choose a starting point, 𝒙&
3. Calculate ∇𝑓(𝒙&) and 𝐻(𝒙&)
4. Calculate the next 𝒙&#' using the equation

5. Use either of the convergence criteria discussed
earlier to determine convergence. If it hasn’t
converged, return to step 2.

𝒙),+ = 𝒙) − 𝐻(𝒙))*+ ∇𝑓(𝒙))



Comments on Newton’s Method
p We can see that unlike the gradient descend, Newton’s method

uses both the gradient and the Hessian

p This usually reduces the number of iterations needed, but increases
the computation needed for each iteration

p So, for very complex functions, a simpler method is usually faster



Newton’s Method Example
For an example, we will use the same problem as 

before:

Minimize f(x1, x2, x3) = (x1)2 + x1(1 – x2) + (x2)2

– x2x3 + (x3)2 + x3
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Newton’s Method Example
The Hessian is:
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And we will need the inverse of the Hessian:

𝐻(𝑥&)

𝐻(𝑥!)"#



Newton’s Method Example

So, pick
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Calculate the gradient for the 1st iteration:
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Newton’s Method Example
So, the new x is:
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Newton’s Method Example
Now calculate the new gradient:
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Since the gradient is zero, the method has converged

∇𝑓(𝒙+)



Comments on Example

p Because it uses the 2nd derivative, Newton ’ s
Method models quadratic functions exactly and
can find the optimum point in one iteration.

p If the function had been a higher order, the
Hessian would not have been constant and it
would have been much more work to calculate
the Hessian and take the inverse for each
iteration.


