Transportation & Assignment Problems

• Some network flow problems don't have trans-shipment nodes; only supply and demand nodes.

Defining the Decision Variables

 X_{ij} = # of bushels shipped from node *i* to node *j*

Specifically, the nine decision variables are:

 $X_{14} = #$ of bushels shipped from Mt. Dora (node 1) to Ocala (node 4) $X_{15} = #$ of bushels shipped from Mt. Dora (node 1) to Orlando (node 5) $X_{16} = \#$ of bushels shipped from Mt. Dora (node 1) to Leesburg (node 6) $X_{24} = \#$ of bushels shipped from Eustis (node 2) to Ocala (node 4) $X_{25} = #$ of bushels shipped from Eustis (node 2) to Orlando (node 5) $X_{26} = #$ of bushels shipped from Eustis (node 2) to Leesburg (node 6) $X_{34} = #$ of bushels shipped from Clermont (node 3) to Ocala (node 4) $X_{35} = #$ of bushels shipped from Clermont (node 3) to Orlando (node 5) $X_{36} = #$ of bushels shipped from Clermont (node 3) to Leesburg (node 6)

Defining the Objective Function

Minimize the total number of bushel-miles. MIN: $21X_{14} + 50X_{15} + 40X_{16} + 35X_{24} + 30X_{25} + 22X_{26} + 55X_{34} + 20X_{35} + 25X_{36}$

Defining the Constraints

- Capacity constraints
- Supply constraints

 $X_{14} + X_{15} + X_{16} = 275,000$ } Mt. Dora $X_{24} + X_{25} + X_{26} = 400,000$ } Eustis

 $X_{34} + X_{35} + X_{36} = 300,000$ } Clermont

 Nonnegativity conditions X_{ij} >= 0 for all *i* and *j*

Generalized Network Flow Problems

- In some problems, a gain or loss occurs in flows over arcs.
 - Examples
 - Oil or gas shipped through a leaky pipeline
 - Imperfections in raw materials entering a production process
 - Spoilage of food items during transit
 - Theft during transit
 - Interest or dividends on investments
- These problems require some modeling changes.

Coal Bank. Hollow Recycling

_	Process 1		Proc		
Material	Cost	Yield	Cost	Yield	Supply
Newspaper	\$13	90%	\$12	85%	70 tons
Mixed Paper	\$11	80%	\$13	85%	50 tons
White Office Paper	\$9	95%	\$10	90%	30 tons
Cardboard	\$13	75%	\$14	85%	40 tons

_	Newsprint		Packagir	ng Paper	Print Stock		
Pulp Source	Cost	Yield	Cost	Yield	Cost	Yield	
Recycling Process 1	\$5	95%	\$6	90%	\$8	90%	
Recycling Process 2	\$6	90%	\$8	95%	\$7	95%	
Demand	60 tons		40 tons		50 tons		

 \mathbf{r}

Network for Recycling Problem

Defining the Objective Function

Minimize total cost.

MIN: $13X_{15} + 12X_{16} + 11X_{25} + 13X_{26} + 9X_{35} + 10X_{36} + 13X_{45} + 14X_{46} + 5X_{57} + 6X_{58} + 8X_{59} + 6X_{67} + 8X_{68} + 7X_{69}$

Defining the Constraints-I

- Raw Materials

Recycling Processes

 $+0.9X_{15}+0.8X_{25}+0.95X_{35}+0.75X_{45}-X_{57}-X_{58}-X_{59} \ge 0$ } node 5

 $+0.85X_{16}+0.85X_{26}+0.9X_{36}+0.85X_{46}-X_{67}-X_{68}-X_{69}>=0 \quad \} \text{ node } 6$

Defining the Constraints-III

• Paper Pulp

 $+0.95X_{57} + 0.90X_{67} \ge 60 \} \text{ node } 7$ +0.90X_{57} + 0.95X_{67} \ge 40 } node 8 +0.90X_{57} + 0.95X_{67} \ge 50 \} \text{ node } 9

Problem Solution

Flow Fr	om	Node	Yield	Flo	w Ir	nto Node	Cost
43.4	1	Newspaper	0.90	39.1	5	Process 1	\$13
26.6	1	Newspaper	0.85	22.6	6	Process 2	\$12
50.0	2	Mixed Paper	0.80	40.0	5	Process 1	\$11
0.0	2	Mixed Paper	0.85	0.0	6	Process 2	\$13
30.0	3	White Office	0.95	28.5	5	Process 1	\$9
0.0	3	White Office	0.90	0.0	6	Process 2	\$10
0.0	4	Cardboard	0.75	0.0	5	Process 1	\$13
35.4	4	Cardboard	0.85	30.1	6	Process 2	\$14
63.2	5	Process 1	0.95	60.0	7	Newsprint	\$5
44.4	5	Process 1	0.90	40.0	8	Packaging	\$6
0.0	5	Process 1	0.90	0.0	9	Print Stock	\$8
0.0	6	Process 2	0.90	0.0	7	Newsprint	\$6
0.0	6	Process 2	0.95	0.0	8	Packaging	\$8
52.6	6	Process 2	0.95	50.0	9	Print Stock	\$7
	111			С.	1	1	
	11	1				Total Cost	\$3,149

()