
The Shortest Path Problem

- Many decision problems boil down to determining the shortest (or least costly) route or path through a network.
 - Ex. Vehicle Routing
- This is a special case of a transshipment problem where:
 - There is one supply node with a supply of -1
 - There is one demand node with a demand of +1
 - All other nodes have supply/demand of +0

The American Car Association

- There are two possible objectives for this problem
 - Finding the quickest route (minimizing travel time)
 - Finding the most scenic route (maximizing the scenic rating points)

MIN: +2.5
$$X_{12}$$
 + 3 X_{13} + 1.7 X_{23} + 2.5 X_{24} + 1.7 X_{35} + 2.8 X_{36} + 2 X_{46} + 1.5 X_{47} + 2 X_{56} + 5 X_{59} + 3 X_{68} + 4.7 X_{69} + 1.5 X_{78} + 2.3 $X_{7,10}$ + 2 X_{89} + 1.1 $X_{8,10}$ + 3.3 $X_{9,11}$ + 2.7 $X_{10,11}$

Subject to:

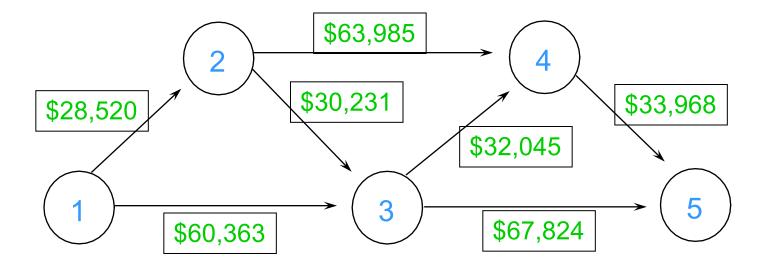
$-X_{12} - X_{13}$	= -1
$+X_{12} - X_{23} - X_{24}$	= 0
$+X_{13} + X_{23} - X_{35} - X_{36}$	= 0
$+X_{24} - X_{46} - X_{47}$	= 0
$+X_{35} - X_{56} - X_{59}$	= 0
$+X_{36} + X_{46} + X_{56} - X_{68} - X_{69}$	= 0
$+X_{47} - X_{78} - X_{7,10}$	= 0
$+X_{68} + X_{78} - X_{89} - X_{8,10}$	= 0
$+X_{59} + X_{69} + X_{89} - X_{9,11}$	= 0
$+X_{7,10} + X_{8,10} - X_{10,11}$	= 0
$+X_{9,11} + X_{10,11}$	= +1
$X_{ij} \ge 0$ for all <i>i</i> and <i>j</i>	

} flow constraint for node 1 } flow constraint for node 2 } flow constraint for node 3 } flow constraint for node 4 } flow constraint for node 5 } flow constraint for node 6 } flow constraint for node 7 } flow constraint for node 8 } flow constraint for node 9 } flow constraint for node 10 } flow constraint for node 11 } nonnegativity conditions

Select					Driving	Scenic	
Route?	Route? From		To)	Time	Rating	
1.0	1	Birmingham	2	Atlanta	2.5	3	
0.0	1	Birmingham	3	Chattanooga	3.0	4	
0.0	2	Atlanta	3	Chattanooga	1.7	4	
1.0	2	Atlanta	4	Greenville	2.5	3	
0.0	3	Chattanooga	5	Knoxville	1.7	5	
0.0	3	Chattanooga	6	Asheville	2.8	7	
0.0	4	Greenville	6	Asheville	2.0	8	
1.0	4	Greenville	7	Charlotte	1.5	2	
0.0	5	Knoxville	6	Asheville	2.0	9	
0.0	5	Knoxville	9	Lynchburg	5.0	9	
0.0	6	Asheville	8	Greensboro	3.0	4	
0.0	6	Asheville	9	Lynchburg	4.7	9	
0.0	7	Charlotte	8	Greensboro	1.5	3	
1.0	7	Charlotte	10	Raleigh	2.3	3	
0.0	8	Greensboro	9	Lynchburg	2.0	4	
0.0	8	Greensboro	10	Raleigh	1.1	3	
0.0	9	Lynchburg	11	Virginia Beach	3.3	5	
1.0	10	Raleigh	11	Virginia Beach	2.7	4	
				Total	11.5	15	

())

Select					Driving	Scenic
Route?	Fre	om	To)	Time	Rating
1.0	1	Birmingham	2	Atlanta	2.5	3
0.0	1	Birmingham	3	Chattanooga	3.0	4
1.0	2	Atlanta	3	Chattanooga	1.7	4
0.0	2	Atlanta	4	Greenville	2.5	3
1.0	3	Chattanooga	5	Knoxville	1.7	5
0.0	3	Chattanooga	6	Asheville	2.8	7
0.0	4	Greenville	6	Asheville	2.0	8
0.0	4	Greenville	7	Charlotte	1.5	2
1.0	5	Knoxville	6	Asheville	2.0	9
0.0	5	Knoxville	9	Lynchburg	5.0	9
0.0	6	Asheville	8	Greensboro	3.0	4
1.0	6	Asheville	9	Lynchburg	4.7	9
0.0	7	Charlotte	8	Greensboro	1.5	3
0.0	7	Charlotte	10	Raleigh	2.3	3
0.0	8	Greensboro	9	Lynchburg	2.0	4
0.0	8	Greensboro	10	Raleigh	1.1	3
1.0	9	Lynchburg	11	Virginia Beach	3.3	5
0.0	10	Raleigh	11	Virginia Beach	2.7	4
				Total	15.9	35


The Equipment Replacement Problem

- The problem of determining when to replace equipment is another common business problem.
- It can also be modeled as a shortest path problem...

The Compu-Train Company

- Compu-Train provides hands-on software training.
- Computers must be replaced at least every two years.
- Two lease contracts are being considered:
 - Each requires \$62,000 initially
 - Contract 1:
 - Prices increase 6% per year
 - 60% trade-in for 1 year old equipment
 - 15% trade-in for 2 year old equipment
 - Contract 2:
 - Prices increase 2% per year
 - 30% trade-in for 1 year old equipment
 - 10% trade-in for 2 year old equipment

Network for Contract 1

Cost of trading after 1 year: 1.06*\$62,000 - 0.6*\$62,000 = \$28,520 Cost of trading after 2 years: 1.06^{2*} \$62,000 - 0.15*\$62,000 = \$60,363 etc, etc....

Select	From	То	Cost
1.0	1	2	\$28,520
0.0	1	3	\$60,363
1.0	2	3	\$30,231
0.0	2	4	\$63,985
1.0	3	4	\$32,045
0.0	3	5	\$67,824
1.0	4	5	\$33,968
	Tota	l Cost	\$124,764

Select	From	То	Cost
1.0	1	2	\$28,520
0.0	1	3	\$60,363
1.0	2	3	\$30,231
0.0	2	4	\$63,985
1.0	3	4	\$32,045
0.0	3	5	\$67,824
1.0	4	5	\$33,968
	Total Cost		\$124,764
			L

Select	From	То	Cost
0.0	1	2	\$44,640
1.0	1	3	\$58,305
0.0	2	3	\$45,533
0.0	2	4	\$59,471
0.0	3	4	\$46,443
1.0	3	5	\$60,660
0.0	4	5	\$47,372
	Total Cost		\$118,965

()