

Network Models

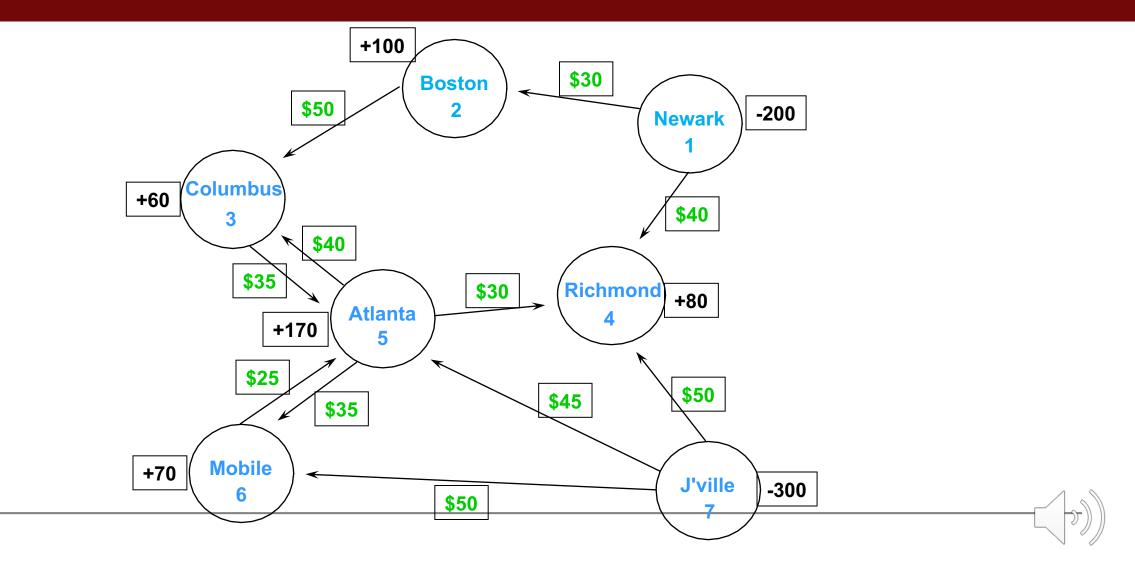
Introduction

- A number of business problems can be represented graphically as networks.
- This chapter focuses on several such problems:
 - Transshipment Problems
 - Shortest Path Problems
 - Maximal Flow Problems
 - Transportation/Assignment Problems
 - Generalized Network Flow Problems
 - The Minimum Spanning Tree Problem

Network Flow Problem Characteristics

- Network flow problems can be represented as a collection of nodes connected by arcs.
- There are three types of nodes:
 - Supply
 - Demand
 - Transshipment
- We'll use negative numbers to represent supplies and positive numbers to represent demand.

A Transshipment Problem: The Bavarian Motor Company



Defining the Decision Variables

For each arc in a network flow model we define a decision variable as:

 X_{ij} = the amount being shipped (or flowing) <u>from</u> node *i* <u>to</u> node *j*

For example...

 X_{12} = the # of cars shipped <u>from</u> node 1 (Newark) <u>to</u> node 2 (Boston)

 X_{56} = the # of cars shipped <u>from</u> node 5 (Atlanta) <u>to</u> node 6 (Mobile)

Note: The number of arcs determines the number of variables!

Defining the Objective Function

Minimize total shipping costs.

MIN: $30X_{12} + 40X_{14} + 50X_{23} + 35X_{35}$ + $40X_{53} + 30X_{54} + 35X_{56} + 25X_{65}$ + $50X_{74} + 45X_{75} + 50X_{76}$

Constraints for Network Flow Problems: The Balance-of-Flow Rules

For Minimum Cost Network	Apply This Balance-of-Flow
Flow Problems Where:	Rule At Each Node:
Total Supply > Total Demand	Inflow-Outflow >= Supply or Demand
Total Supply < Total Demand	Inflow-Outflow <=Supply or Demand
Total Supply = Total Demand	Inflow-Outflow = Supply or Demand

Constraints for Network Flow Problems: The Balance-of-Flow Rules

For Minimum Cost Network	Apply This Balance-of-Flow
Flow Problems Where:	Rule At Each Node:
Total Supply > Total Demand	Inflow-Outflow >= Supply or Demand
Total Supply < Total Demand	Inflow-Outflow <=Supply or Demand
Total Supply = Total Demand	Inflow-Outflow = Supply or Demand

Defining the Constraints

• In the BMC problem:

Total Supply = 500 cars Total Demand = 480 cars

• For each node we need a constraint like this:

Inflow - Outflow >= Supply or Demand

• Constraint for node 1:

 $-X_{12} - X_{14} \ge -200$ (Note: there is no inflow for node 1!)

• This is equivalent to:

 $+X_{12} + X_{14} \le 200$

(r)

Defining the Constraints

- Flow constraints
- Nonnegativity conditions $V \ge 0$ (v = 1 ;;

 $X_{ij} \ge 0$ for all ij

Defining the Constraints

- Flow constraints
- Nonnegativity conditions $V \ge 0$ (v = 1 ;;

 $X_{ij} \ge 0$ for all ij

Optimal Solution to the BMC Problem

