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B&B Summary
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INITIALIZATION

- Relax all the integrality conditions in ILP and solve the resulting LP problem. 
If the optimal solution to the relaxed LP problem happens to satisfy the original

integrality conditions, stop—this is the optimal integer solution. 
Otherwise, proceed to step 2.

- If the problem being solved is a maximization problem let Zbest= -∞. If it
is a minimization problem, let Zbest= ∞. 

In general Zbest represents the objective function value of the best known
integer solution as the algorithm proceeds.
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2. BRANCHING

Let Xj represents one of the variables that violated the integrality conditions in 
the optimal solution to the problem that was solved most recently and let bj
represent its non-integer value. 
Let INT(bj) represent the largest integer that is less than bj.
Create two new candidate problems: one by appending the constraint Xj ≤ 

INT(bj) to the most recently solved LP problem, and the other by appending
the constraint Xj ≥ INT(bj) + 1 to the most recently solved LP problem. 

Place both of these new LP problems in a list of candidate problems to be 
solved.
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3. SOLVE THE RELAXED SUBPROBLEMS AND BOUNDING

a. If the list of candidate problems is empty, proceed to step 6 (STOP). 
Otherwise, remove a candidate problem from the list, relax any integrality

conditions in the problem, and solve it.

b. If there is not a solution to the current candidate problem (that is, it is

infeasible), proceed to step 3.a. Otherwise, let Zcp denote the optimal objective
function value for the current candidate problem.

c. If Zcp is not better than Zbest (for a maximization problem Zcp ≤ Zbest or for a 
minimization problem Zcp ≥ Zbest), proceed to step 3.a.

.
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d. If the solution to the current candidate problem does not satisfy the original

integrality conditions, and Zcp is better than Zbest proceed to step 2 
(BRANCHING).

e. If the solution to the current candidate problem does satisfy the original
integrality conditions, a better integer solution has been found. 

Thus, let Zbest = Zcp and save the solution obtained for this candidate problem. 
Then go back to step 3.

4. STOP. The optimal solution has been found and has an objective function
value given by the current value of Zbest.
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